Kossans klimatpåverkan: Metan och lustgas

Kossans klimatpåverkan: Metan och lustgas 150 150 Ann-Helen von Bremen
Jag har skrivit en serie om kossans klimatpåverkan åt tidningen Husdjur där jag tittat på en del av den nya forskning som har kommit. Under de senaste åren har det blivit allt tydligare att bilden av kossan som den stora klimatboven har förändrats i takt med ny kunskap på området. Den första artikeln hittar du här
Det här är den andra artikeln som handlar om metan och lustgas.
Metan är den växthusgas som står för största delen av kornas klimatpåverkan. Men med snabb nedbrytningstid och färre antal kor har den svenska mjölkens bidrag till den globala uppvärmningen i praktiken halverats.
METAN OCH LUSTGAS ÄR de två växthusgaser som spelar störst roll för mjölkens och nötköttets klimatpåverkan, men till skillnad mot koldioxid finns det här stora osäkerheter.
För mjölkproduktionens klimatpåverkan står metanet för 51 procent, lustgasen för 32 procent och koldioxiden för 17 procent. Metan är en kraftfull växthusgas, men den är samtidigt kortlivad. Den bryts ner i atmosfären efter 11–12 år och ger efter det ingen ytterligare uppvärmning.
Lustgas stannar däremot kvar i cirka 150 år och koldioxid lever vidare i tusentals år och fortsätter under hela denna tid att bidra till uppvärmningen. Det är därför som det är så viktigt att snabbt få ner utsläppen av koldioxid till noll.
För metan innebär det här att om du har lika många kor som släpper ut samma mängd metan så får du efter 11–12 år ingen ökning av metanhalten i atmosfären och därför ingen ökad uppvärmning.
ASTRID KANDER, professor på Ekonomiskhistoriska institutionen vid Lunds universitet, har räknat på växthusgasutsläppen från svenskt jord- och skogsbruk under 200 år, från 1800 till 2000. Hon skriver om detta i ett kapitel till boken ”Svensk mosskultur från 1700 till 1950”. Hon har utgått från historisk statistik över det totala antalet kor och även uppskattat kornas metanutsläpp utifrån avelns utveckling.
– Vi hade runt 1,5 miljoner nötkreatur 1870 och ytterligare en miljon, det vill säga 2,6 miljoner djur, vid 1930. Vid 2000 var vi tillbaka på 1870-talets nivåer, säger Astrid Kander.
Utifrån dessa siffror räknade hon ut att vid Sveriges ko-peak 1930 släpptes det ut 130 000 ton metan, medan svenska kor vid milleniets början släppte ut 93 000 ton metan.
– Som synes i studien så var också dessa utsläpp ganska begränsade i förhållande till utsläpp från förändrad markanvändning och skogsbruk, säger hon.
I DAG BERÄKNAS produktionen av ett kilo mjölk orsaka cirka ett kilo koldioxidekvivalenter. Men baserat på studien bidrar alltså inte längre svenska kors metanutsläpp till någon ökad uppvärmning. Räknar vi bort metanet, kommer mjölkens klimatpåverkan mer än halveras eftersom hälften av koldioxidekvivalenterna kommer från just metanet.
Varför har inte de här siffrorna fått något genomslag i klimatdebatten?
– Jag tror inte så många har rätt uppgifter om antalet nötkreatur, men jag undrar också över varför det blir så mycket fokus på kött och på flygresor. Jag tror det handlar om att det är sådant som man som individ kan göra aktiva val kring, medan man känner sig maktlös inför de stora samhälls- och infrastrukturförändringar som behövs för övrigt, säger Astrid Kander.
I DE LIVSCYKELANALYSER som görs för att beräkna mjölkens klimatpåverkan räknas metan och lustgas om till koldioxidekvivalenter. Metan och lustgas är kraftigare växthusgaser än koldioxid, hur mycket starkare är dock en fråga om beräkning.
Det vanligaste sättet att räkna kallas för GWP-100 (se faktaruta). GWP har kritiserats av klimatforskare för att inte ta hänsyn till att metan är en betydligt mer kortlivad växthusgas än koldioxid. Michelle Cain, forskare på växthusgaser på Oxfords universitet har sagt att en kobesättning som ligger på samma antal djur släpper ut lika mycket växthusgaser som ett stängt kolkraftverk.
”Kraftverket bidrog till den globala uppvärmningen när det tidigare var i drift, precis som bondens farföräldrar bidrog till uppvärmningen när de byggde upp sin boskapshjord. Men vare sig en konstant djurbesättning eller ett nedlagt kraftverk bidrar numera till den globala uppvärmningen”, skriver Michelle Cain på den brittiska webbsajten Carbon Brief.
Därför finns också en annan metod som kallas GTP, Global Temperature Change Potential. Och det sätt man väljer att räkna på kommer inte bara påverka hur stor mjölkens klimatpåverkan anses vara, det kommer också påverka vilket produktionssätt som verkar mest klimatsmart.
EN STUDIE FRÅN Nya Zeeland har undersökt hur olika beräkningsmodeller ger olika resultat. Använder man GTP-100 är det extensiv mjölkproduktion som ger den lägsta klimatpåverkan, men räknar man i stället med GWP-20 så är det den intensiva mjölkproduktionen som får lägst klimatpåverkan.
Ännu större osäkerhet råder kring lustgasen som främst kommer från mark och gödsel. Utsläppen varierar väldigt mycket, dels mellan olika år, men också mellan olika gårdar. FN:s klimatpanel IPCC anger att utsläppen av lustgas kan vara allt från 0,7 procent av kvävet i gödsel och urinen till hela 6 procent.
”OM DE OSÄKERHETER som anges i den nationella klimatrapporteringen används ger det ett osäkerhetsintervall på mellan 2,83 och 11,63 Mton CO2-ekvivalenter för referensscenariot år 2050.” skriver Jordbruksverket om lustgas och metan i sin rapport ”Ett klimatvänligt jordbruk 2050”.
Det är sällan som utsläppen verkligen mäts, i stället använder man schabloner och modeller. När det inte finns mätningar brukar man använda siffran 2 procent av kvävet. Under förra året publicerades i Brasilien den första studie som faktiskt undersökte lustgasutsläpp från kors urin på betesmark.
Den visade att bara 0,2 procent av kvävet omvandlades till lustgas. Plötsligt var bara en tiondel kvar av de brasilianska betande kornas lustgasutsläpp.
NYA ZEELAND HAR GJORT en egen modell för sin mjölkproduktion, baserad på egna mätningar. Där utgår man i stället från att 1 procent av det tillförda kvävet ger lustgasutsläpp vid gräsbetning. Skulle de använda sig av IPCCs beräkningar, skulle lustgasutsläppen vara hela 60 procent högre och de totala utsläppen öka med 15 procent.
Sammanfattningsvis är osäkerheten kring lustgas och metan mycket stor samtidigt som dessa växthusgaser spelar störst roll för kornas klimatpåverkan. Hur man väljer att räkna dessa växthusgaser kommer att spela stor roll för resultatet.
HUR STOR KLIMATBOV ÄR EGENTLIGEN KOSSAN? I tre artiklar berättar Husdjur om forskningen kring kon och hennes miljöpåverkan, med fokus på klimatet. Andra delen handlar om metan och lustgas, de två växthusgaser som står för den största delen av kons klimatbelastning.

Så räknar forskarna:

Olika metoder för att omvandla metan och lustgas till koldioxidekvivalenter.
GWP-100
Global Warming Potential (global uppvärmningspotential) under 100 år.
Ett kilo metan =
25 kilo koldioxidekvivalenter
GWP-20
Global Warming Potential (global uppvärmningspotential) under 20 år.
Ett kilo metan =
72–86 kilo koldioxidekvivalenter.
GTP-100
Global Temperature Change Potential. Anger den temperaturhöjning som kommer att inträffa efter ett visst antal år.
Ett kilo metan =
4 kilo koldioxidekvivalenter.

Metankällor och sänkor

Genomsnittligt årligt metanutsläpp mellan 2003–2012, miljoner ton per år (siffror i parantes ger variationer i olika beräkningar).
(Källa: Global Carbon Project)
ANTROPOGENA KÄLLOR
Fossila bränslen 105
(77–133)
Jordbruk och avfall 188
(115–243)
Bränder 34
(15–53)
SPEC AV JORDBRUKETS KÄLLOR
Idisslare 102
Ris 29
Deponier och avfall 57
Summa 188
NATURLIGA KÄLLOR
Våtmarker
167
(127–202)
Andra naturliga utsläpp 64 (21-132) (termiter, oceaner, permafrost
osv)
Summa källor 558
SÄNKOR
Kemiska reaktioner i atmosfären
515 (510–583)
Kolsänkor 33
(28–38)
Summa sänkor 548

 

 

Ann-Helen von Bremen

Vem har makten över din matkasse? Det här är en blogg om hur matproduktionen, politiken och affärerna kring maten ser ut. Jag arbetar annars som frilansjournalist och skriver om lantbruk, livsmedel och mat. Här skriver jag mer fritt om matkedjan. Jag är inte alltid arg, mat är ett av mina största nöjen. Men jag är alltid hungrig. Ann-Helen Meyer von Bremen

All stories by: Ann-Helen von Bremen

Leave a Reply

Your email address will not be published.